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Sasa-Satsuma higher-order nonlinear Schro¨dinger equation and its bilinearization
and multisoliton solutions

C. Gilson,1,* J. Hietarinta,2,† J. Nimmo,1,‡ and Y. Ohta3,§

1Department of Mathematics, University of Glasgow, Glasgow G12 8QW, United Kingdom
2Department of Physics, University of Turku, FIN-20014 Turku, Finland

3Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
~Received 15 April 2003; published 25 July 2003!

Higher-order and multicomponent generalizations of the nonlinear Schro¨dinger equation are important in
various applications, e.g., in optics. One of these equations, the integrable Sasa-Satsuma equation, has particu-
larly interesting soliton solutions. Unfortunately, the construction of multisoliton solutions to this equation
presents difficulties due to its complicated bilinearization. We discuss briefly some previous attempts and then
give the correct bilinearization based on the interpretation of the Sasa-Satsuma equation as a reduction of the
three-component Kadomtsev-Petviashvili hierarchy. In the process, we also get bilinearizations and multisoli-
ton formulas for a two-component generalization of the Sasa-Satsuma equation~the Yajima-Oikawa-Tasgal-
Potasek model!, and for a (211)-dimensional generalization.
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I. INTRODUCTION

One of the most interesting applications of solitons is
the propagation of short pulses in optical fibers~for an over-
view, see Ref.@1#!. The basic phenomena are described
the nonlinear Schro¨dinger equation, but as the pulses g
shorter various additional effects become important. In R
@2# Kodama and Hasegawa derived the relevant equa
with higher-order correction terms, the generic form of su
an equation is~in the optical fiber setting the roles of tim
and space are usually reversed!

iqj1a1qtt1a2uqu2q1 i @b1qttt1b2uqu2qt1b3q~ uqu2!t#

50, ~1!

where thea i ,b i are real constants andq a complex function.
The first three terms form the standard nonlinear Schro¨dinger
equation~NLS! and theb i terms are the perturbative corre
tions. Usually, one chooses the scaling so thata252a1. In
this paper, we assumeb1Þ0.

Our main concern here is the bilinearization and mu
soliton solutions of the Sasa-Satsuma equation~SSNLS! @3#,
which is a particularly interesting integrable example in t
above class. In this section, we discuss some basic prope
of Eq. ~1!, its integrable special cases and their multicomp
nent generalizations. In particular, we show that many pre
ous attempts to solve these equations have produced
rather trivial solutions, in which the complex and multicom
ponent freedom has been ‘‘frozen.’’ The reason for this tu
out to be in the incorrect bilinearization that was used
those papers. The correct bilinearization~presented in Sec. I
with detailed derivation in Sec. III! follows once we identify
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SSNLS as a reduction of the three-component Kadomts
Petviashvili~KP! hierarchy, and then we also obtain gene
multisoliton solutions.

A. Gauge transformation

In order to understand the complex structure of Eq.~1!, it
is important to isolate the gauge~phase! invariance and fix
the gauge. First, let us recall that the NLS part of Eq.~1!
~i.e., if b i50) is invariant under the combined gauge-Gali
transformation

q~j,t!5eiv(t2vj)/a1y~x,t !, x5t22vj, t5j. ~2!

The full equation~1! is not invariant under Eq.~2!, but if we
try the transformation

q~j,t!5ei (c1t1c2j)y~x,t !, x5t1c3j,t5j,

ci real constants, ~3!

we find that if

c35c1~22a113b1c1!, c25c1
2~2a11c1b1!, ~4!

then Eq.~1! is form invariant: the equation fory(x,t) is as in
Eq. ~1! with b i unchanged, but thea i change according to

a1→ã15a123b1c1 , a2→ã25a22b2c1 . ~5!

We can therefore use this transformation to puta15a2
50, provided that

3b1a25b2a1 . ~6!

@In the usual normalizationa15 1
2 , a251 ~6! meansb2

56b1.# In all integrable cases~along with some noninte-
grable cases appearing in the literature! Eq. ~6! is satisfied,
and we assume it from now on.
©2003 The American Physical Society14-1
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On the basis of the above,we fix gauge~3! by requiring
that a i50 in the equationand compare results only in tha
uniquely defined gauge.

B. Integrable cases

The integrability of the class of equations~1! has been
studied by a number of authors using Painleve´ analysis
@4–6# and other methods@7#, with the consistent result that i
b1 ,b2Þ0 there are precisely two integrable cases w
bright solitons.

~1! Hirota’s equation~HNLS! @8#: b1 :b2 :b351:6:3,

qt1qxxx16uqu2qx50, ~7!

~2! Sasa-Satsuma equation~SSNLS! @3#: b1 :b2 :b3
51:6:3,

qt1qxxx16uqu2qx13quq2ux50. ~8!

Here, the scaling convention mentioned above has been
sumed and thea i terms eliminated.

Some nonintegrable special cases of Eq.~1! have also
been studied in the literature, including@9,10#: b1 :b2 :b3
51:6:6,

qt1qxxx16~quq2u!x50. ~9!

C. Multicomponent generalizations

Both HNLS and SSNLS allow various kinds of multicom
ponent generalizations, some of them integrable. The res
of a Painleve´ analysis@11# can be summarized as follows

Case 1:

q1t1q1xxx13~ uq1u21uq2u2!q1x50,

q2t1q2xxx13~ uq1u21uq2u2!q2x50, ~10!

which can be interpreted as a real four-component modi
Korteweg–de Vries~mKdV! equation, reducing to HNLS fo
q15q2, etc.;

Case 2@11#:

q1t1q1xxx13~ uq1u21uq2u2!q1x13q1~ uq2u2!x50,

q2t1q2xxx13~ uq1u21uq2u2!q2x13q2~ uq1u2!x50;
~11!

and Case 3@12#:

q1t1q1xxx13~ uq1u21uq2u2!q1x1 3
2 q1~ uq1u21uq2u2!x50,

q2t1q2xxx13~ uq1u21uq2u2!q2x1 3
2 q2~ uq1u21uq2u2!x50,

~12!
01661
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which reduce to SSNLS under the above reduction; an
mixed case,

Case 4@13,14#:

q1t1q1xxx1
a

2
~ uq1u21uq2u2!q1x1

a

2
q1~q1* q1x1q2* q2x!50,

q2t1q2xxx1
a

2
~ uq1u21uq2u2!q2x1

a

2
q2~q1* q1x1q2* q2x!50,

~13!

which reduces to HNLS underq5q15q2 ,a53 and to
SSNLS underq5q15q2* ,a56. In each case, we must, o
course, adjoin the complex conjugated equations. Cases
are invariant underq2↔q2* , while case 4 changes to th
alternative form

Case 48:

q1t1q1xxx1
a

2
~ uq1u21uq2u2!q1x1

a

2
q1~q1* q1x1q2q2x* !50,

q2t1q2xxx1
a

2
~ uq1u21uq2u2!q2x1

a

2
q2~q1q1x* 1q2* q2x!50.

~14!

Under the reductionq250, cases 1,2,4 reduce to HNLS an
3 to SSNLS.

D. The modified Korteweg–de Vries limit

With complex and multicomponent equations, it is impo
tant to make the following observation: we can always ma
the real, one-component reduction

qi~x,t !5ciu~x,t ! ; i , ~15!

whereu is a real function andci are arbitrary complex con
stants. As a result of this,all the equations mentioned befor
~and many others, including nonintegrable ones! reduce to
the real mKdV equation

ut5uxxx1ku2ux . ~16!

~Note that for case 2, we needuc1u5uc2u.! This was observed
already in Ref.@4#; see Eqs.~21!–~25!. A consequence of this
rather simple observation is the following.

All these complex and/or multicomponent systems alw
have multisoliton solutions of the real mKdV type, with fr
zen complex and/or multicomponent freedom.

In the usual real one-component case, the existenc
multisoliton solutions is a sign of integrability, but from th
above we can see that this is not necessarily true in the c
plex or multicomponent case. In general, it is essential t
the individual solitons, from which the multisoliton solutio
is built, are each allowed to have their own freedom of init
position and overall phase. That is, even if a one-soli
solution is of type~15!, in the multisoliton case each com
ponent soliton must be allowed to have its own paramet
4-2
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including the complex coefficient~s! ci . Furthermore, during
scattering some of these parameters can change@15#.

Thus, in practice reduction~15! trivializes the equation
and the resulting solutions are hardly of interest. Nevert
less, it seems that several recent studies have fallen into
trap and produced no solutions with genuine multicompon
or complex structure. This is quite evident from the propos
final results: for example, the multicomponent structure
trivialized into a constant factor in Ref.@16# @see Eqs.~3.15!,
~3.16! or ~3.20!, or ~3.25!, ~3.26!, ~3.32!, ~3.33!# @10# @see
Eq. ~17! or ~24! or ~27!#, and @17# @see Eq.~10! or ~13!#,
whereas the solutions are obviously real~after the gauge ha
been fixed! in Ref. @9# ~see Sec. III!, @18# @see Eqs.~2!, ~3!,
~15!, and~16!#, and@19# ~in Sec. IVki ,h i are real andH/G
a constant!. Below, we will show that the reason for th
often lies in the incorrect bilinearization that was used.

E. Traveling-wave solutions

Let us now return to the one-component Eqs.~7! and ~8!
and consider their one-soliton solutions. For the purpose
orientation, let us first consider HNLS~7!. The usual
traveling-wave ansatz

q~x,t !5ei (ax1bt1v) f ~x1dt1d!, ~17!

wheref is a real function~soliton envelope!, leads to a pair of
real equations, which are compatible, if

b5a~3d28a2!, ~18!

and in that case the solution can be parametrized as follo

q~x,t !5eia[x1(a223c2)t1v]
c

cosh@c$x1~3a22c2!t1d%#
.

~19!

We observe that there are four free real parameters:a andc,
which relate to the size and velocity of the soliton, andv,d
which give the constant complex phase and soliton posit
respectively.

If we use the same ansatz~17! in Eq. ~8!, we find that it
works only under the additional conditiona50, leading to

q~x,t !5
ceiv

A2 cosh@c~x2c2t1d!#
. ~20!

Since one parameter was lost, solution~20! is not general
enough. Indeed, Sasa and Satsuma have derived a com
traveling-wave solution to Eq.~8!, which does not fit the
usual ansatz~17! but has the form@3#

q~x,t !5eia[x1(a223c2)t1v]
2ehc~e2h1k!

e4h12e2h1uku2
,

k5
a

a1 ic
, h5c@x1~3a22c2!t1d#. ~21!
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We note that this has similarx,t dependence as Eq.~19! but
the functional form is different; also in the limita→0, i.e.,
k→0, we obtain the real limit~20!.

It turns out that Eq.~21! is still not the most genera
one-soliton solution for this system; it is given byq5G/F,
where

G5geh1r* eh* 1mS g

2p2
e2h1h* 1

r*

2p* 2
eh12h* D ,

~22!

F5112
uru21ugu2

~p1p* !2
eh1h* 1

rg

2p2
e2h1

r* g*

2p* 2
e2h*

1
umu2

4upu4
e2(h1h* )

511 1
2Ugeh

p
1

r* eh*

p*
U2

1 1
2 ~ ugu21uru2!U~p2p* !eh

~p1p* !p
U2

1Ume2h

2p2 U2

, ~23!

m5~ ugu2p2uru2p* !
p2p*

~p1p* !2
, ~24!

h5px2p3t1h (0), p, r, g, and h (0) complex.
~25!

Comparing with the original one-soliton solution~21!, we
have two extra parametersg and r. By h translation one
finds that onlyr/g matters, and if it vanishes we have th
usual SS solution, so this is a genuine new parameter.
parameter controls the oscillation, which appears not only
the carrier but also in the envelope~but in any caseF>1 so
the solution is not singular!. This solution was already ob
tained by Mihalacheet al. @20# using inverse scattering trans
form, below we will derive it using the bilinear method. It
not easy to derive such a solution from a~complex!
traveling-wave ansatz, and Hirota’s bilinear method is ea
to use in this case.

F. Outline

In this paper, we first present in Sec. II the bilinearizatio
that work and the one-soliton solution that is obtained by
expansion method. The detailed derivations and multiso
tion solutions are made in Sec. III.

It is well known that soliton equations can be organiz
into infinite hierarchies as described by the Sato theory@21#
and that particular equations can be obtained from these
erarchies by various reductions. Indeed, one cannot ha
full understanding of an integrable equation before its re
tion to integrable hierarchies is described. In Sec. III, we w
give the full picture by showing that the Sasa-Satsuma eq
tion can be obtained from the general Sato theory as a re
tion of the three-component KP hierarchy. The reduction c
4-3
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be made in two different ways producing two different bili
earizations. As intermediate steps of the reduction proc
we get either a (211)-dimensional generalization or a com
plex two-component generalization of the Sasa-Satsu
equation.

II. DIRECT BILINEARIZATION AND ONE-SOLITON
SOLUTIONS

One can attempt to bilinearize the generic equation

qt1qxxx16uqu2qx1bq~ uqu2!x50 ~26!

with the standard substitution

q5
G

F
, ~27!

whereF is taken to be real andG complex. This leads to the
equation

F2@~Dx
31Dt!G•F#2bGF~DxG•G* !23~DxG•F !

3@Dx
2F•F2 2

3 ~b13!uGu2#50, ~28!

which is quartic inF,G. Here Dx and Dt are the Hirota
bilinear operators. We can see that ifb50 ~which is the
HNLS case! the equation splits naturally into two bilinea
ones, (Dx

31Dt)G•F50 andDx
2F•F52uGu2. In the general

case~that includes the SSNLS equation atb53), we could
take

Dx
2F•F5 2

3 ~b13!uGu2, ~29!

as one of the equations, which leaves a trilinear equatio

F@~Dx
31Dt!G•F#2bG@DxG•G* #50. ~30!

One might be tempted to require that in Eq.~30! the terms
in square brackets vanish separately, but this is not cor
~as was already noted in Ref.@4#! because it would result in
more independent equations than there are unknowns an
effect force reduction to the real mKdV equation.@Clearly
DxG•G* 50⇔]x(G/G* )50 and therefore, the phase ofG
has nox dependence, and whenG5R(x,t)eiu(t) is substi-
tuted into the remaining equation one finds thatu(t) must be
constant, i.e., Eq.~15!.# As a matter of fact, this sort ofbrute
force bilinearizationturns out to be precisely the reason f
the trivialization of the complex multicomponent freedo
mentioned before. Unfortunately, this incorrect approach
been used quite frequently, see, e.g., Eq.~3.6! of Ref. @16#;
Eqs. ~9!, ~29!, ~44!, and ~47! of Ref. @10#; Eq. ~12! of Ref.
@22#; Eq. ~26! of Ref. @23#; Eqs.~21!–~24! of Ref. @24#; Eq.
~7c! of Ref. @18#; Eq. ~20! of Ref. @19#; Eq. ~43! of Ref. @25#;
Eq. ~18! of Ref. @26#; Eqs.~9! and~16! of Ref. @17#; Eq. ~38!
of Ref. @27#.

The trilinear equation~30! can only be split into two bi-
linear ones by introducing a new dependent variable. Th
are two acceptable ways to do this, resulting in
01661
s,
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Dx
2F•F5 2

3 ~b13!uGu2,

@~62b!Dx
312~b13!Dt#G•F53bDxH•F,

@~62b!Dx
312~b13!Dt#G* •F53bDxH* •F,

Dx
2G•F52HF,

Dx
2G* F•52H* F, ~31!

or

Dx
2F•F5 2

3 ~b13!uGu2,

~Dx
31Dt!G•F5bSG,

~Dx
31Dt!G* •F52bSG* ,

DxG•G* 5SF, ~32!

where the new dependent variable has been calledH andS,
respectively. Note thatS is pure imaginary,H complex, and
that HG* 2H* G5DxF•S. These splittings are acceptabl
because they introduce equal numbers of new functions
new equations and, furthermore, for integrable equations
soliton solutions the new functions turn out to be express
in terms of polynomials of exponentials. Thus, for anyb we
can give for Eq.~26! a bilinear form in terms of three bilin-
ear equations for three functions, but it should be emp
sized that the fact that an equation can be written in a bilin
form does not by itself imply that the equation is integrab
or that the new functionsS,H aret functions, although it is
the case whenb53.

The one-soliton solution can be obtained as usual by s
stituting the expansions

F511e2F21e4F41•••, G5eG11e3G31•••

~33!

accompanied by suitable ansatzH or S, into Eq.~31! or ~32!,
and truncating at some power of the formal expansion
rametere. For HNLS (b50), the expansion can be trun
cated by keeping terms up toe2, but for SSNLS (b53), we
must go up toe4 obtainingF,G as given in Eqs.~22!–~25!,
with the auxiliary functions

S5~p2p* !~ ugu22uru2!eh1h* , ~34!

H52gp2eh2r* p* 2eh*

2
m

2 Fgp* 2

p2
e2h1h* 1

r* p2

p* 2
eh12h* G , ~35!

which are also polynomials of exponentials. It is not know
whether the expansion can be truncated for any other v
of b.
4-4
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III. THE SASA-SATSUMA EQUATION AS A REDUCTION
OF THE THREE-COMPONENT KP HIERARCHY

We will next explain how the Sasa-Satsuma equation
its multisoliton solutions can be obtained from the thre
component KP hierarchy by suitable reductions. It turns
that there aretwo different reduction routes leading to th
Sasa-Satsuma equation; both are two-step reductions bu
intermediate equations are different. We will first descr
the starting point~three-component KP hierarchy! and then
the two kinds of reductions.

A. Three-component KP hierarchy and itst functions

In general, the three-component KP hierarchy hast func-
tions depending on three infinite sets of variablesx
5x,x2 ,x3 , . . . , y5y,y2 ,y3 , . . . , andz5z,z2 ,z3 , . . . , and
is defined in terms of vector ‘‘eigenfunctions’’f(x), c(y),
and x(z) and ‘‘adjoint eigenfunctions’’f̄(x), c̄(y), and
x̄(z). We should emphasize that, at this point, these
eigenfunctions are independent of one another. In gen
they are only assumed to satisfy the linear equations~for n
52,3, . . . )

]xn
f5]x

nf, 2]xn
f̄5~2]x!

nf̄, ~36!

]yn
c5]y

nc, 2]yn
c̄5~2]y!nc̄, ~37!

]zn
x5]z

nx, 2]zn
x̄5~2]z!

nx̄. ~38!

Here, we consider the special case in which only depende
on x,x2 ,x3 , y, andz is active and so the vectorsf(x,x2 ,x3)
andf̄(x,x2 ,x3) satisfy

]x2
f5]x

2f, ]x3
f5]x

3f, ]x2
f̄52]x

2f̄, ]x3
f̄5]x

3f̄,
~39!

and c(y), x(z), c̄(y), and x̄(z) are arbitrary vector func-
tions of a single variable.

A potential matrixm is defined by

]xm5ff̄t, ]ym5cc̄ t, ]zm5xx̄ t, ~40!

which can be integrated to

m5c1E ff̄tdx1E cc̄ tdy1E xx̄ tdz, ~41!

wherec is a constant matrix. As a consequence of Eq.~36!,
we also have

]x2
m5fxf̄t2ff̄x

t , ]x3
m5fxxf̄

t2fxf̄x
t 1ff̄xx

t ,
~42!

Now define thet functions

f 5umu, ~43!
01661
d
-
t

the
e

ix
al,

ce

g5U m f

2c̄ t 0U, ḡ5U m c

2f̄t 0U , ~44!

and

h5U m f

2x̄ t 0U, h̄5U m x

2f̄t 0U. ~45!

By considering Jacobi determinantal identities involvi
f, g, ḡ, h, and h̄ and their derivatives with respect tox, x2 ,
x3 , y, and z, one may compile a complete list of bilinea
equations that are satisfied by these functions. The bilin
equations given below are the only ones from this list t
will actually be used in the rest of this paper:

~Dx
22Dx2

!g• f 50, ~Dx
21Dx2

!ḡ• f 50, ~46!

~Dx
22Dx2

!h• f 50, ~Dx
21Dx2

!h̄• f 50, ~47!

~Dx
313DxDx2

24Dx3
!g• f 50,

~Dx
323DxDx2

24Dx3
!ḡ• f 50, ~48!

~Dx
313DxDx2

24Dx3
!h• f 50,

~Dx
323DxDx2

24Dx3
!h̄• f 50, ~49!

DyDxf • f 522gḡ, DzDxf • f 522hh̄, ~50!

Dy~Dx
22Dx2

!g• f 50, Dy~Dx
21Dx2

!ḡ• f 50, ~51!

Dz~Dx
22Dx2

!h• f 50, Dz~Dx
21Dx2

!h̄• f 50. ~52!

As is typical for the multicomponent KP hierarchy, this set
equations appears to be overdetermined as it stands, ha
many more equations than dependent variables. But we
ready know that it has a rather general set of solutions gi
above ~even containing several arbitrary functions of o
variable!. It turns out that there exist exactly the right num
ber of differential relations among these equations to gu
antee their compatibility. There is some freedom in choos
the primary or independent equations, one choice is~46!,
~47!, ~48a!, and~50! ~seven equations for five functions an
two dummy independent variables!. The remaining equations
are consequences of these or possibly just restrict some
stants of integration. As an example consider Eq.~48b!.
From Eq.~46a!, we can determinegx2

, from Eq. ~48a!, gx3
,

and from their cross derivatives, we get an equation forf. But
now doing the same computation forḡ from Eqs.~46b! and
~48b!, we get thesameequation forf and thus Eq.~48b! does
not add essential information.

In order to write Eqs.~46!–~52! in nonlinear form, let us
first introduce the dependent variables
4-5
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q5
g

f
, q̄5

ḡ

f
, r 5

h

f
, r̄ 5

h̄

f
, and

F5 1
2 ~ ln f !x , C5 1

2 ~ ln f !x2
. ~53!

Converting the bilinear equations into nonlinear form a
eliminating dependence on the auxiliary variablex2 one ob-
tains

qxxx16qxFx13q~Fxx1Cx!2qx3
50,

q̄xxx16q̄xFx13q̄~Fxx2Cx!2q̄x3
50,

r xxx16r xFx13r ~Fxx1Cx!2r x3
50,

r̄ xxx16r̄ xFx13r̄ ~Fxx2Cx!2 r̄ x3
50, ~54!

together with

Fy52 1
2 qq̄, Fz52 1

2 r r̄ ,

Cy52 1
2 ~qxq̄2qq̄x!, Cz52 1

2 ~r xr̄ 2r r̄ x!. ~55!

Although this looks superficially like a (311)-dimensional
system, it in fact describes a family of (211)-dimensional
systems. They andz dependence arises in such a way tha
could be replaced by single variable corresponding to
linear combination ofy andz.

In the following sections, we will describe a two-stag
reduction of this system in which a calculation similar to th
used above will give the Sasa-Satsuma equation.

B. First reduction, step 1

The previous set of equations contains two dummy v
ables,x2 and one ofy,z. In this reduction, we will eliminate
the dummy variables by keeping just the leading terms inx2
andy2z. We start by considering eigenfunctions and adjo
eigenfunctions possessing the symmetry

f̄~x,2x2 ,x3!5f~x,x2 ,x3!, ~56!

and the other eigenfunctions having pairwise identical form

c̄~a!5x~a!, x̄~a!5c~a!. ~57!

This reduction may be shown to be a natural generaliza
of the three-component version of theC reduction described
in Ref. @21#.

Now we explore the consequences of this symmetry
the t functions. Using the independent variablesy5j1h
andz5j2h, symmetry~57! gives

c̄~y!5x~j1h!5x~z!uh→2h ,

x̄~z!5c~j2h!5c~y!uh→2h .

For the potentialm, it is then easy to see that
01661
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m~x,2x2 ,x3 ,j,2h!5mt~x,x2 ,x3 ,j,h!, ~58!

as long as the constant matrixc in Eq. ~41! is taken to be
symmetric. Hence,

f ~x,2x2 ,x3 ,j,2h!5 f ~x,x2 ,x3 ,j,h!. ~59!

In a similar way,

ḡ~x,2x2 ,x3 ,j,2h!5h~x,x2 ,x3 ,j,h!,

h̄~x,2x2 ,x3 ,j,2h!5g~x,x2 ,x3 ,j,h!. ~60!

Next we consider the Taylor expansions of the eigenfu
tions with respect tox2 andh and obtain

f~x,x2 ,x3!5f~x,0,x3!1x2fxx~x,0,x3!1O~x2
2!, ~61!

while symmetry~56! gives

f̄~x,x2 ,x3!5f~x,0,x3!2x2fxx~x,0,x3!1O~x2
2!. ~62!

By a similar argument

c~y!5c~j!1O~h!, x~z!5x~j!1O~h!,

c̄~y!5x~j!1O~h!, x̄~z!5c~j!1O~h!. ~63!

For the potentialm, the expansion is

m~x,x2 ,x3 ,j,h!5m~x,0,x3 ,j,0!1x2~fxft2ffx
t !~x,0,x3!

1O~x2
2 ,h!. ~64!

For thet functions, we then get

f 5 f 0~x,x3 ,j!1O~x2
2 ,hx2 ,h2! ~65!

and

f 05um0u, ~66!

wherem05m(x,0,x3 ,j,0) satisfies

m0,x5f0f0
t , m0,x3

5f0,xxf0
t 2f0,xf0,x

t 1f0f0,x
t ,

m0,j5cx t1xc t, ~67!

andf05f(x,0,x3) satisfies the single linear partial differen
tial equation

]x3
f05]x

3f0 . ~68!

Also,

g5g01x2g21O~x2
2 ,h!, h5h01x2h21O~x2

2 ,h!,
~69!

where

g05U m0 f0

2x t 0
U, h05U m0 f0

2c t 0
U ~70!
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and

g25U m0 f0,xx

2x t 0
U2U m0 f0 f0,x

2f0
t 0 0

2x t 0 0
U ,

h25U m0 f0,xx

2c t 0
U2U m0 f0 f0,x

2f0
t 0 0

2c t 0 0
U . ~71!

Finally, because of Eq.~60!

ḡ5h02x2h21O~x2
2 ,h!, h̄5g02x2g21O~x2

2 ,h!.
~72!

The above discussion shows that, up to leading orders ix2

and h, the original fivet functions f, g, h, ḡ, h̄ can be
written in terms of the fivet functions f 0 , g0 , g2 , h0 , h2
depending only onx, x3, andj.

The final part of calculation is to identify an appropria
set of five bilinear equations involving these fivet functions.
Applying the reduction to Eqs.~46!–~50! gives

Dx
2g0• f 05g2f 0 , Dx

2h0• f 05h2f 0 , ~73!

~Dx
324Dx3

!g0• f 0523Dxg2• f 0 ,

~Dx
324Dx3

!h0• f 0523Dxh2• f 0 , ~74!

DjDxf 0• f 0524g0h0 . ~75!

Notice that in this reduction, Eqs.~46! and ~47! give Eq.
~73!; Eqs. ~48! and ~49! give Eq. ~74!; and the sum of the
equations in Eq.~50! gives Eq.~75!.

This set of bilinear equations~73!–~75! is the Hirota form
of a (211)-dimensional Sasa-Satsuma equation. If we
fine

q5
g0

f 0
, r 5

h0

f 0
, q25

g2

f 0
, r 25

h2

f 0
, and

F5 1
2 ~ ln f 0!x , ~76!

then Eq.~73! gives

q25qxx14qFx , r 25r xx14rFx , ~77!

Eq. ~74! gives

qxxx112qxFx24qx3
523q2,x ,
01661
-

r xxx112r xFx24r x3
523r 2,x , ~78!

and Eq.~75! gives

Fj52qr. ~79!

After eliminatingq2 and r 2, one obtains

qxxx16qxFx13qFxx5qx3
,

r xxx16r xFx13rFxx5r x3
,

Fj52qr. ~80!

If we now setr 52q* , x352t, and useU5Fx , we get a
(211)-dimensional Sasa-Satsuma equation

qt1qxxx16qxU13qUx50,

Uj5~ uqu2!x . ~81!

C. First reduction, step 2

In order to make a dimensional reduction from (211)- to
(111)-dimensional, we make a further rotation of coord
nates

x5 1
2 ~X1J!, j5 1

2 ~X2J!, ~82!

and then choose eigenfunctions so that thet functions will
be independent ofJ. Then bothX andJ derivatives in Eq.
~80! becomex derivatives and we obtain the Sasa-Satsu
equation with two complex fields

qxxx26qxqr23q~qr !x2qx3
50,

r xxx26r xqr23r ~qr !x2r x3
50. ~83!

In order to keep the solution structure in this dimensio
reduction, it is necessary to choose eigenfunctionsf, c, and
x so that they are separable with a common dependenc
J. A natural way to achieve this is to take

~f0! i5l ie
pix1pi

3x3→l ie
(1/2)piJe(1/2)piX1pi

3x3, ~84!

c i5m̂ ie
2pij→m̂ ie

(1/2)piJe2(1/2)piX, ~85!

x i5 n̂ ie
2pij→ n̂ ie

(1/2)piJe2(1/2)piX, ~86!

wherel i , m̂ i , n̂ i , and pi are constants. As a result of th
choice of eigenfunctions, we have
~m0! i j 5ci j 1e(1/2)piJFl il je
(1/2)(pi1pj )X1(pi

3
1pj

3)x32~m̂ i n̂ j1 n̂ im̂ j !e
2(1/2)(pi1pj )X

pi1pj
Ge(1/2)pjJ, for pi1pjÞ0, ~87!
4-7
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whereci j are constants of integration@if pi1pj50, we must
choose the coefficients properly so that from Eq.~41! we get
a constant, which can then be absorbed into thec matrix#. As
a consequence of theC reduction, the matrixci j has to be
symmetric. In order thatf 05um0u be independent ofJ, we
must have

)
i 51

L

e(1/2)piJ5const, ~88!

and, for eachi , j P$1, . . . ,L%,

ci j e
2(1/2)(pi1pj )J5const. ~89!

These are satisfied if and only if( i 51
L pi50, and for each

i , j P$1, . . . ,L% either ci j 50 or pi1pj50. Consequently,
we takeL52N and then

pN1 i52pi ; i 51, . . . ,N,

ci j 5d i 1N, j ci2d i , j 1Ncj ; i , j P$1, . . . ,2N%. ~90!

Finally, we show how to obtain solutions of the usu
Sasa-Satsuma equation~8!, in which r 52q* , where *
stands for complex conjugation. In order for this to com
about, we must havef 0 real andh0* 52g0 , h2* 52g2, and
so we must impose the relations

f0* 5Pf0 , c* 5Px, x* 5Pc, ~91!

whereP is a permutation matrix. The simplest realization
these conditions is to takeN52M , choose the permutatio
to be

P5S 0 I 0 0

I 0 0 0

0 0 0 I

0 0 I 0

D ,

with M3M blocks, and
01661
l

f

f05

¨

l1e(1/2)p1X1p1
3x3

A

lMe(1/2)pMX1pM
3 x3

l1* e(1/2)p1* X1p1*
3x3

A

lM* e(1/2)pM* X1pM*
3x3

0

A

0

0

A

0

©
,

c5

¨

0

A

0

0

A

0

m1e(1/2)p1X

A

mMe(1/2)pMX

n1* e(1/2)p1* X

A

nM* e(1/2)pM* X

©
, and x5

¨

0

A

0

0

A

0

n1e(1/2)p1X

A

nMe(1/2)pMX

m1* e(1/2)p1* X

A

mM* e(1/2)pM* X

©
,

~92!

where we have changed the notation for coefficients in or
to conform with Eq.~91!. Since thee(1/2)pkJ factors in Eqs.
~84!–~87! will eventually cancel out with the above choice
we do not include them in these formulas, but in order
compensate this omission we must replace]x

nf0 by
(2]X)nf0, e.g., in Eq.~71!.

Taking all constants of integrationci51 in Eq.~90! gives
the M-soliton solution. In particular, the one-soliton solutio
shown in Eqs.~22!–~25! is obtained forM51, l151, m1
52r, n152g.

If we setx352T and following Eq.~82! replaceDx and
Dj with DX in the bilinear equations~73!–~75! they become

DX
2g0• f 05g2f 0 , ~93!

~DX
314DT!g0• f 0523DXg2• f 0 , ~94!
4-8
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DX
2 f 0• f 054g0g0* . ~95!

This is the same as Eq.~31! for b53, if we identify f 0
5F, g052G, and g25H. The multisoliton solutions are
obtained from Eq.~87!, ~66!, ~70!, and ~71! with Eq. ~92!.
@But please remember that due to the simplified expressi
we have]x

nf05(2]X)nf0.#

D. Second reduction, step 1

To obtain the alternative bilinear form of SSNLS, w
carry out the reduction process in a different manner. T
process will take us via a ‘‘coupled Sasa-Satsuma equat
as opposed to the (211)-dimensional Sasa-Satsuma equ
tion.

First, we need to introduce two newt functions

s5U m f fx

2c̄ t 0 0

2x̄ t 0 0
U , s̄5U m c x

2f̄t 0 0

2f̄x
t 0 0

U . ~96!

In addition to Eqs.~46!–~52!, we now have some furthe
bilinear equations satisfied by theset functions together with
the original fivet functions~43!–~45!:

Dz~Dx
22Dx2

!g• f 54sh̄, Dz~Dx
21Dx2

!ḡ• f 54s̄h,
~97!

Dy~Dx
22Dx2

!h• f 524sḡ, Dy~Dx
21Dx2

!h̄• f 524s̄g,
~98!

Dxh•g5s f, Dxh̄•ḡ5 s̄f . ~99!

Again these equations are not all independent. Altoge
there are seven dependent variablesf ,g,ḡ,h,h̄,s,s̄ and two
dummy independent variables and, therefore, we need
independent equations. We can take, e.g., Eqs.~46!, ~47!,
~48a!, ~50!, and ~99!, and then the other equations are co
sequences of these.@In practice, it is best to keep the full se
at one’s disposal.#

If we change variables toj andh using

y5j1h, z5j2h, ~100!

then taking sums and differences of some of the equati
for instance, Eqs.~51a! and ~97a!, we get some equation
containing onlyj derivatives and others containgh deriva-
tives. In the following, we will only use the ones containin
j derivatives, they are

Dj~Dx
22Dx2

!g• f 54sh̄, Dj~Dx
21Dx2

!ḡ• f 54s̄h,
~101!

Dj~Dx
22Dx2

!h• f 524sḡ, Dj~Dx
21Dx2

!h̄• f 524s̄g,
~102!

DjDxf • f 522~gḡ1hh̄!. ~103!
01661
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This leaves us with Eqs.~46!–~49!, ~99!, ~101!–~103!.
At this stage, we have not yet carried out a reduction

we now do a second change of variables

x5 1
2 ~X1J!, j5 1

2 ~X2J!, ~104!

we can achieve a dimensional reduction in a manner sim
to the dimensional reduction in Sec. III C, i.e., by expandi
in h, J and keeping only the leading terms. After also elim
nating thex2 dependence, and denotingx352T, we finally
obtain the following set of equations:

~DX
31DT!g• f 53sh̄, ~DX

31DT!ḡ• f 53s̄h, ~105!

~DX
31DT!h• f 523sḡ, ~DX

31DT!h̄• f 523s̄g,
~106!

DXh•g5s f, DXh̄•ḡ5 s̄f , ~107!

DX
2 f • f 522~gḡ1hh̄!. ~108!

This is a coupled Sasa-Satsuma equation with comp
fields. The nonlinear form obtained with the substitutions

q5
g

f
, q̄5

ḡ

f
, r 5

h

f
, r̄ 5

h̄

f
,

is

qT1qXXX26qXqq̄23r̄ ~qr !X50,

q̄T1q̄XXX26q̄Xq̄q23r ~ q̄r̄ !X50,

r T1r XXX26r Xr r̄ 23q̄~rq !X50,

r̄ T1 r̄ XXX26r̄ Xr̄ r 23q~ r̄ q̄!X50, ~109!

which was proposed already in Ref.@13#. If we take q̄5

2q* , r̄ 52r * , we obtain Eq.~13!.

E. Second reduction, step 2

The final reduction on this system is a reduction ofC
type, this is obtained as in the other bilinearization by ide
tifying

ḡ5h, h̄5g, s̄52s. ~110!

This gives us the alternative bilinear form of the Sas
Satsuma equations:

~DX
31DT!g• f 53sg, ~DX

31DT!ḡ• f 523sḡ,
~111!

DXg•ḡ52s f, ~112!

DX
2 f • f 524gḡ. ~113!
4-9
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With f 5F, g52G, ḡ5G* , s5S these equations yield
~32! for b53. The solutions for this alternative form will b
the same as in the first case and the nonlinear form of th
equations is Eq.~83!, with r replaced byq̄. This bilinear
form of the system requires a single pure imaginary auxili
variables, while the other bilinearization involves a comple
auxiliary field h, and consequently, here we need four bil
ear equations rather than five.

IV. CONCLUSIONS

In this paper, we have shown how the Sasa-Satsuma e
tion fits into the general theory as a reduction of the thr
a

hy

01661
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component KP hierarchy. As a result, we have obtained
possible bilinearization for SSNLS,~31! and ~32!, and for-
mulas for constructing multisoliton solutions,~87!, ~92!,
~66!, ~70!, ~71!, and~96!. In the reduction process, we hav
also obtained two intermediate equations,~81! and ~109!, of
which the (211)-dimensional equation~81! seems to be
new.
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